A Coding Implementation to Training, Optimizing, Evaluating, and Interpreting Knowledge Graph Embeddings with PyKEEN

Binance
A Coding Implementation to Training, Optimizing, Evaluating, and Interpreting Knowledge Graph Embeddings with PyKEEN
Binance


Thank you for reading this post, don't forget to subscribe!

In this tutorial, we walk through an end-to-end, advanced workflow for knowledge graph embeddings using PyKEEN, actively exploring how modern embedding models are trained, evaluated, optimized, and interpreted in practice. We start by understanding the structure of a real knowledge graph dataset, then systematically train and compare multiple embedding models, tune their hyperparameters, and analyze their performance using robust ranking metrics. Also, we focus not just on running pipelines but on building intuition for link prediction, negative sampling, and embedding geometry, ensuring we understand why each step matters and how it affects downstream reasoning over graphs. Check out the FULL CODES here.

!pip install -q pykeen torch torchvision

import warnings
warnings.filterwarnings(‘ignore’)

import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, List, Tuple

from pykeen.pipeline import pipeline
from pykeen.datasets import Nations, FB15k237, get_dataset
from pykeen.models import TransE, ComplEx, RotatE, DistMult
from pykeen.training import SLCWATrainingLoop, LCWATrainingLoop
from pykeen.evaluation import RankBasedEvaluator
from pykeen.triples import TriplesFactory
from pykeen.hpo import hpo_pipeline
from pykeen.sampling import BasicNegativeSampler
from pykeen.losses import MarginRankingLoss, BCEWithLogitsLoss
from pykeen.trackers import ConsoleResultTracker

print(“PyKEEN setup complete!”)
print(f”PyTorch version: {torch.__version__}”)
print(f”CUDA available: {torch.cuda.is_available()}”)

We set up the complete experimental environment by installing PyKEEN and its deep learning dependencies, and by importing all required libraries for modeling, evaluation, visualization, and optimization. We ensure a clean, reproducible workflow by suppressing warnings and verifying the PyTorch and CUDA configurations for efficient computation. Check out the FULL CODES here.

print(“\n” + “=”*80)
print(“SECTION 2: Dataset Exploration”)
print(“=”*80 + “\n”)

dataset = Nations()

print(f”Dataset: {dataset}”)
print(f”Number of entities: {dataset.num_entities}”)
print(f”Number of relations: {dataset.num_relations}”)
print(f”Training triples: {dataset.training.num_triples}”)
print(f”Testing triples: {dataset.testing.num_triples}”)
print(f”Validation triples: {dataset.validation.num_triples}”)

print(“\nSample triples (head, relation, tail):”)
for i in range(5):
h, r, t = dataset.training.mapped_triples[i]
head = dataset.training.entity_id_to_label[h.item()]
rel = dataset.training.relation_id_to_label[r.item()]
tail = dataset.training.entity_id_to_label[t.item()]
print(f” {head} –[{rel}]–> {tail}”)

def analyze_dataset(triples_factory: TriplesFactory) -> pd.DataFrame:
“””Compute basic statistics about the knowledge graph.”””
stats = {
‘Metric’: [],
‘Value’: []
}

stats[‘Metric’].extend([‘Entities’, ‘Relations’, ‘Triples’])
stats[‘Value’].extend([
triples_factory.num_entities,
triples_factory.num_relations,
triples_factory.num_triples
])

unique, counts = torch.unique(triples_factory.mapped_triples[:, 1], return_counts=True)
stats[‘Metric’].extend([‘Avg triples per relation’, ‘Max triples for a relation’])
stats[‘Value’].extend([counts.float().mean().item(), counts.max().item()])

return pd.DataFrame(stats)

stats_df = analyze_dataset(dataset.training)
print(“\nDataset Statistics:”)
print(stats_df.to_string(index=False))

We load and explore the Nation’s knowledge graph to understand its scale, structure, and relational complexity before training any models. We inspect sample triples to build intuition about how entities and relations are represented internally using indexed mappings. We then compute core statistics such as relation frequency and triple distribution, allowing us to reason about graph sparsity and modeling difficulty upfront. Check out the FULL CODES here.

print(“\n” + “=”*80)
print(“SECTION 3: Training Multiple Models”)
print(“=”*80 + “\n”)

models_config = {
‘TransE’: {
‘model’: ‘TransE’,
‘model_kwargs’: {’embedding_dim’: 50},
‘loss’: ‘MarginRankingLoss’,
‘loss_kwargs’: {‘margin’: 1.0}
},
‘ComplEx’: {
‘model’: ‘ComplEx’,
‘model_kwargs’: {’embedding_dim’: 50},
‘loss’: ‘BCEWithLogitsLoss’,
},
‘RotatE’: {
‘model’: ‘RotatE’,
‘model_kwargs’: {’embedding_dim’: 50},
‘loss’: ‘MarginRankingLoss’,
‘loss_kwargs’: {‘margin’: 3.0}
}
}

training_config = {
‘training_loop’: ‘sLCWA’,
‘negative_sampler’: ‘basic’,
‘negative_sampler_kwargs’: {‘num_negs_per_pos’: 5},
‘training_kwargs’: {
‘num_epochs’: 100,
‘batch_size’: 128,
},
‘optimizer’: ‘Adam’,
‘optimizer_kwargs’: {‘lr’: 0.001}
}

results = {}

for model_name, config in models_config.items():
print(f”\nTraining {model_name}…”)

result = pipeline(
dataset=dataset,
model=config[‘model’],
model_kwargs=config.get(‘model_kwargs’, {}),
loss=config.get(‘loss’),
loss_kwargs=config.get(‘loss_kwargs’, {}),
**training_config,
random_seed=42,
device=”cuda” if torch.cuda.is_available() else ‘cpu’
)

results[model_name] = result

print(f”\n{model_name} Results:”)
print(f” MRR: {result.metric_results.get_metric(‘mean_reciprocal_rank’):.4f}”)
print(f” Hits@1: {result.metric_results.get_metric(‘hits_at_1’):.4f}”)
print(f” Hits@3: {result.metric_results.get_metric(‘hits_at_3’):.4f}”)
print(f” Hits@10: {result.metric_results.get_metric(‘hits_at_10’):.4f}”)

We define a consistent training configuration and systematically train multiple knowledge graph embedding models to enable fair comparison. We use the same dataset, negative sampling strategy, optimizer, and training loop while allowing each model to leverage its own inductive bias and loss formulation. We then evaluate and record standard ranking metrics, such as MRR and Hits@K, to quantitatively assess each embedding approach’s performance on link prediction. Check out the FULL CODES here.

print(“\n” + “=”*80)
print(“SECTION 4: Model Comparison”)
print(“=”*80 + “\n”)

metrics_to_compare = [‘mean_reciprocal_rank’, ‘hits_at_1’, ‘hits_at_3’, ‘hits_at_10’]
comparison_data = {metric: [] for metric in metrics_to_compare}
model_names = []

for model_name, result in results.items():
model_names.append(model_name)
for metric in metrics_to_compare:
comparison_data[metric].append(
result.metric_results.get_metric(metric)
)

comparison_df = pd.DataFrame(comparison_data, index=model_names)
print(“Model Comparison:”)
print(comparison_df.to_string())

fig, axes = plt.subplots(2, 2, figsize=(15, 10))
fig.suptitle(‘Model Performance Comparison’, fontsize=16)

for idx, metric in enumerate(metrics_to_compare):
ax = axes[idx // 2, idx % 2]
comparison_df[metric].plot(kind=’bar’, ax=ax, color=”steelblue”)
ax.set_title(metric.replace(‘_’, ‘ ‘).title())
ax.set_ylabel(‘Score’)
ax.set_xlabel(‘Model’)
ax.grid(axis=”y”, alpha=0.3)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45)

plt.tight_layout()
plt.show()

We aggregate evaluation metrics from all trained models into a unified comparison table for direct performance analysis. We visualize key ranking metrics using bar charts, allowing us to quickly identify strengths and weaknesses across different embedding approaches. Check out the FULL CODES here.

print(“\n” + “=”*80)
print(“SECTION 5: Hyperparameter Optimization”)
print(“=”*80 + “\n”)

hpo_result = hpo_pipeline(
dataset=dataset,
model=”TransE”,
n_trials=10,
training_loop=’sLCWA’,
training_kwargs={‘num_epochs’: 50},
device=”cuda” if torch.cuda.is_available() else ‘cpu’,
)

print(“\nBest Configuration Found:”)
print(f” Embedding Dim: {hpo_result.study.best_params.get(‘model.embedding_dim’, ‘N/A’)}”)
print(f” Learning Rate: {hpo_result.study.best_params.get(‘optimizer.lr’, ‘N/A’)}”)
print(f” Best MRR: {hpo_result.study.best_value:.4f}”)

print(“\n” + “=”*80)
print(“SECTION 6: Link Prediction”)
print(“=”*80 + “\n”)

best_model_name = comparison_df[‘mean_reciprocal_rank’].idxmax()
best_result = results[best_model_name]
model = best_result.model

print(f”Using {best_model_name} for predictions”)

def predict_tails(model, dataset, head_label: str, relation_label: str, top_k: int = 5):
“””Predict most likely tail entities for a given head and relation.”””
head_id = dataset.entity_to_id[head_label]
relation_id = dataset.relation_to_id[relation_label]

num_entities = dataset.num_entities
heads = torch.tensor([head_id] * num_entities).unsqueeze(1)
relations = torch.tensor([relation_id] * num_entities).unsqueeze(1)
tails = torch.arange(num_entities).unsqueeze(1)

batch = torch.cat([heads, relations, tails], dim=1)

with torch.no_grad():
scores = model.predict_hrt(batch)

top_scores, top_indices = torch.topk(scores.squeeze(), k=top_k)

predictions = []
for score, idx in zip(top_scores, top_indices):
tail_label = dataset.entity_id_to_label[idx.item()]
predictions.append((tail_label, score.item()))

return predictions

if dataset.training.num_entities > 10:
sample_head = list(dataset.entity_to_id.keys())[0]
sample_relation = list(dataset.relation_to_id.keys())[0]

print(f”\nTop predictions for: {sample_head} –[{sample_relation}]–> ?”)
predictions = predict_tails(
best_result.model,
dataset.training,
sample_head,
sample_relation,
top_k=5
)

for rank, (entity, score) in enumerate(predictions, 1):
print(f” {rank}. {entity} (score: {score:.4f})”)

We apply automated hyperparameter optimization to systematically search for a stronger TransE configuration that improves ranking performance without manual tuning. We then select the best-performing model based on MRR and use it to perform practical link prediction by scoring all possible tail entities for a given head–relation pair. Check out the FULL CODES here.

print(“\n” + “=”*80)
print(“SECTION 7: Model Interpretation”)
print(“=”*80 + “\n”)

entity_embeddings = model.entity_representations[0]()
entity_embeddings_tensor = entity_embeddings.detach().cpu()

print(f”Entity embeddings shape: {entity_embeddings_tensor.shape}”)
print(f”Embedding dtype: {entity_embeddings_tensor.dtype}”)

if entity_embeddings_tensor.is_complex():
print(“Detected complex embeddings – converting to real representation”)
entity_embeddings_np = np.concatenate([
entity_embeddings_tensor.real.numpy(),
entity_embeddings_tensor.imag.numpy()
], axis=1)
print(f”Converted embeddings shape: {entity_embeddings_np.shape}”)
else:
entity_embeddings_np = entity_embeddings_tensor.numpy()

from sklearn.metrics.pairwise import cosine_similarity

similarity_matrix = cosine_similarity(entity_embeddings_np)

def find_similar_entities(entity_label: str, top_k: int = 5):
“””Find most similar entities based on embedding similarity.”””
entity_id = dataset.training.entity_to_id[entity_label]
similarities = similarity_matrix[entity_id]

similar_indices = np.argsort(similarities)[::-1][1:top_k+1]

similar_entities = []
for idx in similar_indices:
label = dataset.training.entity_id_to_label[idx]
similarity = similarities[idx]
similar_entities.append((label, similarity))

return similar_entities

if dataset.training.num_entities > 5:
example_entity = list(dataset.entity_to_id.keys())[0]
print(f”\nEntities most similar to ‘{example_entity}’:”)
similar = find_similar_entities(example_entity, top_k=5)
for rank, (entity, sim) in enumerate(similar, 1):
print(f” {rank}. {entity} (similarity: {sim:.4f})”)

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
embeddings_2d = pca.fit_transform(entity_embeddings_np)

plt.figure(figsize=(12, 8))
plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], alpha=0.6)

num_labels = min(10, len(dataset.training.entity_id_to_label))
for i in range(num_labels):
label = dataset.training.entity_id_to_label[i]
plt.annotate(label, (embeddings_2d[i, 0], embeddings_2d[i, 1]),
fontsize=8, alpha=0.7)

plt.title(‘Entity Embeddings (2D PCA Projection)’)
plt.xlabel(‘PC1’)
plt.ylabel(‘PC2’)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

print(“\n” + “=”*80)
print(“TUTORIAL SUMMARY”)
print(“=”*80 + “\n”)

print(“””
Key Takeaways:
1. PyKEEN provides easy-to-use pipelines for KG embeddings
2. Multiple models can be compared with minimal code
3. Hyperparameter optimization improves performance
4. Models can predict missing links in knowledge graphs
5. Embeddings capture semantic relationships
6. Always use filtered evaluation for fair comparison
7. Consider multiple metrics (MRR, Hits@K)

Next Steps:
– Try different models (ConvE, TuckER, etc.)
– Use larger datasets (FB15k-237, WN18RR)
– Implement custom loss functions
– Experiment with relation prediction
– Use your own knowledge graph data

For more information, visit: https://pykeen.readthedocs.io
“””)

print(“\n✓ Tutorial Complete!”)

We interpret the learned entity embeddings by measuring semantic similarity and identifying closely related entities in the vector space. We project high-dimensional embeddings into two dimensions using PCA to visually inspect structural patterns and clustering behavior within the knowledge graph. We then consolidate key takeaways and outline clear next steps, reinforcing how embedding analysis connects model performance to meaningful graph-level insights.

In conclusion, we developed a complete, practical understanding of how to work with knowledge graph embeddings at an advanced level, from raw triples to interpretable vector spaces. We demonstrated how to rigorously compare models, apply hyperparameter optimization, perform link prediction, and analyze embeddings to uncover semantic structure within the graph. Also, we showed how PyKEEN enables rapid experimentation while still allowing fine-grained control over training and evaluation, making it suitable for both research and real-world knowledge graph applications.

Check out the FULL CODES here. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.



Source link

Binance